Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Vet Diagn Invest ; : 10406387231218223, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331725

RESUMO

Viral nervous necrosis (viral encephalopathy and retinopathy) is caused by piscine nodavirus (Nodaviridae, Betanodavirus). Since 1986, this highly infectious virus has caused mass mortalities of up to 100% in farmed saltwater and freshwater fish around the world (with the exception of South America and Antarctica), affecting >60 species across 10 orders. The Atlantic blue marlin (Makaira nigricans Lacépède, 1802) is a top-level predator found throughout the tropical waters of the Atlantic and Indo-Pacific oceans. Despite their popularity as a sportfish, relatively little is known about the Atlantic blue marlin and other billfish. We describe here chronic betanodavirus infection in a juvenile Atlantic blue marlin, which is, to our knowledge, the first report of disease in M. nigricans.

2.
Front Genet ; 14: 1069300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144122

RESUMO

Tilapia Lake Virus (TiLV), also known as Tilapia tilapinevirus, is an emerging pathogen affecting both wild and farmed tilapia (Oreochromis spp.), which is considered one of the most important fish species for human consumption. Since its first report in Israel in 2014, Tilapia Lake Virus has spread globally causing mortality rates up to 90%. Despite the huge socio-economic impact of this viral species, to date the scarce availability of Tilapia Lake Virus complete genomes is severely affecting the knowledge on the origin, evolution and epidemiology of this virus. Herein, along with the identification, isolation and complete genome sequencing of two Israeli Tilapia Lake Virus deriving from outbreaks occurred in tilapia farms in Israel in 2018, we performed a bioinformatics multifactorial approach aiming to characterize each genetic segment before carrying out phylogenetic analysis. Results highlighted the suitability of using the concatenated ORFs 1, 3, and 5 in order to obtain the most reliable, fixed and fully supported tree topology. Finally, we also attempted to investigate the presence of potential reassortment events in all the studied isolates. As a result, we report a reassortment event detected in segment 3 of isolate TiLV/Israel/939-9/2018 involved in the present study, and confirmed almost all the other events previously reported.

3.
Genet Sel Evol ; 55(1): 22, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013478

RESUMO

BACKGROUND: The gilthead sea bream (Sparus aurata) has long been considered resistant to viral nervous necrosis (VNN), until recently, when significant mortalities caused by a reassortant nervous necrosis virus (NNV) strain were reported. Selective breeding to enhance resistance against NNV might be a preventive action. In this study, 972 sea bream larvae were subjected to a NNV challenge test and the symptomatology was recorded. All the experimental fish and their parents were genotyped using a genome-wide single nucleotide polymorphism (SNP) array consisting of over 26,000 markers. RESULTS: Estimates of pedigree-based and genomic heritabilities of VNN symptomatology were consistent with each other (0.21, highest posterior density interval at 95% (HPD95%): 0.1-0.4; 0.19, HPD95%: 0.1-0.3, respectively). The genome-wide association study suggested one genomic region, i.e., in linkage group (LG) 23 that might be involved in sea bream VNN resistance, although it was far from the genome-wide significance threshold. The accuracies (r) of the predicted estimated breeding values (EBV) provided by three Bayesian genomic regression models (Bayes B, Bayes C, and Ridge Regression) were consistent and on average were equal to 0.90 when assessed in a set of cross-validation (CV) procedures. When genomic relationships between training and testing sets were minimized, accuracy decreased greatly (r = 0.53 for a validation based on genomic clustering, r = 0.12 for a validation based on a leave-one-family-out approach focused on the parents of the challenged fish). Classification of the phenotype using the genomic predictions of the phenotype or using the genomic predictions of the pedigree-based, all data included, EBV as classifiers was moderately accurate (area under the ROC curve 0.60 and 0.66, respectively). CONCLUSIONS: The estimate of the heritability for VNN symptomatology indicates that it is feasible to implement selective breeding programs for increased resistance to VNN of sea bream larvae/juveniles. Exploiting genomic information offers the opportunity of developing prediction tools for VNN resistance, and genomic models can be trained on EBV using all data or phenotypes, with minimal differences in classification performance of the trait phenotype. In a long-term view, the weakening of the genomic ties between animals in the training and test sets leads to decreased genomic prediction accuracies, thus periodical update of the reference population with new data is mandatory.


Assuntos
Dourada , Animais , Dourada/genética , Teorema de Bayes , Estudo de Associação Genômica Ampla , Larva/genética , Genótipo , Genômica/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
Animals (Basel) ; 13(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048464

RESUMO

The interaction of nanomaterials with pollutants in the marine environment might alter bioavailability, as well as toxicity, of both nanomaterials and pollutants, representing a risk, not only for marine organisms, but also for consumers through the marine food chain.The aim of this study was to evaluate the effect of titanium dioxide nanoparticles (TiO2NPs) in terms of bioaccumulation and toxicity on Mediterranean mussels (Mytilus galloprovincialis) exposed to six-indicator non-dioxin-like polychlorinated biphenyls (ndl-PCBs). Mussels were exposed to ndl-PCBs (20 µg/mL) (groups 3-4) or to a combination of ndl-PCBs (20 µg/mL) and TiO2NPs (100 µg/mL) (groups 5-6) for four consecutive days. TiO2NPs was detected in groups 5-6 (3247 ± 567 and 1620 ± 223 µg/kg respectively), but their presence did not affect ndl-PCBs bioaccumulation in mussels. In fact, in groups 3-4, the concentration of ndl-PCBs (ranging from 3818.4 ± 166.0-10,176 ± 664.3 µg/kg and 2712.7 ± 36.1-9498.0 ± 794.1 µg/kg respectively) was not statistically different from that of groups 5-6 (3048.6 ± 24.0-14,635.9 ± 1029.3 and 5726.0 ± 571.0-9931.2 ± 700.3 µg/kg respectively). Histological analyses showed alterations to the structure of the gill tissue with respect to the control groups, with more severe and diffuse dilatation of the central hemolymphatic vessels of the gill lamellae in groups 5-6 (treated with TiO2NPs and ndl-PCBs concurrently) compared to groups 3-4 (ndl-PCBs only). Finally, in mussels submitted to a seven-day depuration process, most TiO2NPs were eliminated, and NPs had a synergistic effect on ndl-PCBs elimination; as a matter of fact, in groups 5-6, the percentage of concentration was statically inferior to the one observed in groups 3-4. In any case, consumers might be exposed to TiO2NPs and ndl-PCBs (both concurrently and separately) if edible mussels, harvested in a contaminated environment, are consumed without a proper depuration process.

5.
J Fish Dis ; 46(7): 723-730, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36916637

RESUMO

The skin represents an indicator of an animal's health status. Causes of cutaneous diseases in fish most often trace back to biological agents. However, fish skin diseases can also arise from a complex interaction of infectious and non-infectious causes, making it more difficult to identify a specific aetiology. In the period between April and September of the years 2019-2022, four koi carp (Cyprinus carpio koi) from two European countries presented with multifocal, irregularly round, few mm to 1 cm, variably raised cutaneous reddened areas. The fish displayed good general condition. Cutaneous samples, investigated by microbiological and molecular methods and microscopy, did not indicate a primary pathogenic agent. Gross and histological findings of the cutaneous biopsies were consistent with a multifocal/reactive process centred on dermal vessels. The histological features were reminiscent of angiomatosis, a benign proliferative condition affecting the dermal vessels of mammals, including human patients. The clinical-pathological presentation and the dermatologic condition that affected the koi carp are discussed and compared with the veterinary and human literature.


Assuntos
Angiomatose , Carpas , Doenças dos Peixes , Humanos , Animais , Pele , Europa (Continente) , Mamíferos
6.
Microorganisms ; 12(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38257883

RESUMO

The rainbow trout (Oncorhynchus mykiss) is the most important produced species in freshwater within the European Union, usually reared in intensive farming systems. This species is highly susceptible to viral hemorrhagic septicemia (VHS), a severe systemic disease widespread globally throughout the world. Viral hemorrhagic septicemia virus (VHSV) is the etiological agent and, recently, three classes of VHSV virulence (high, moderate, and low) have been proposed based on the mortality rates, which are strictly dependent on the viral strain. The molecular mechanisms that regulate VHSV virulence and the stimulated gene responses in the host during infection are not completely unveiled. While some preliminary transcriptomic studies have been reported in other fish species, to date there are no publications on rainbow trout. Herein, we report the first time-course RNA sequencing analysis on rainbow trout juveniles experimentally infected with high and low VHSV pathogenic Italian strains. Transcriptome analysis was performed on head kidney samples collected at different time points (1, 2, and 5 days post infection). A large set of notable genes were found to be differentially expressed (DEGs) in all the challenged groups (e.s. trim63a, acod1, cox-2, skia, hipk1, cx35.4, ins, mtnr1a, tlr3, tlr7, mda5, lgp2). Moreover, the number of DEGs progressively increased especially during time with a greater amount found in the group infected with the high VHSV virulent strain. The gene ontology (GO) enrichment analysis highlighted that functions related to inflammation were modulated in rainbow trout during the first days of VHSV infection, regardless of the pathogenicity of the strain. While some functions showed slight differences in enrichments between the two infected groups, others appeared more exclusively modulated in the group challenged with the highly pathogenic strain.

7.
Vaccines (Basel) ; 10(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36560472

RESUMO

Despite the negative impact of viral hemorrhagic septicemia (VHS) and infectious hematopoietic necrosis (IHN) on European rainbow trout farming, no vaccines are commercially available in Europe. DNA vaccines are protective under experimental conditions, but testing under intensive farming conditions remains uninvestigated. Two DNA vaccines encoding the glycoproteins (G) of recent Italian VHSV and IHNV isolates were developed and tested for potency and safety under experimental conditions. Subsequently, a field vaccination trial was initiated at a disease-free hatchery. The fish were injected intramuscularly with either the VHS DNA vaccine or with a mix of VHS and IHN DNA vaccines at a dose of 1 µg/vaccine/fish, or with PBS. At 60 days post-vaccination, fish were moved to a VHSV and IHNV infected facility. Mortality started 7 days later, initially due to VHS. After 3 months, IHN became the dominant cause of disease. Accordingly, both DNA vaccinated groups displayed lower losses compared to the PBS group during the first three months, while the VHS/IHN vaccinated group subsequently had the lowest mortality. A later outbreak of ERM caused equal disease in all groups. The trial confirmed the DNA vaccines to be safe and efficient in reducing the impact of VHS and IHN in farmed rainbow trout.

8.
Pathogens ; 11(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36297153

RESUMO

Due to marine mammals' demonstrated susceptibility to SARS-CoV-2, based upon the homology level of their angiotensin-converting enzyme 2 (ACE2) viral receptor with the human one, alongside the global SARS-CoV-2 occurrence and fecal contamination of the river and marine ecosystems, SARS-CoV-2 infection may be plausibly expected to occur also in cetaceans, with special emphasis on inshore species like bottlenose dolphins (Tursiops truncatus). Moreover, based on immune and inflammatory responses to SARS-CoV-2 infection in humans, macrophages could also play an important role in antiviral defense mechanisms. In order to provide a more in-depth insight into SARS-CoV-2 susceptibility in marine mammals, we evaluated the presence of SARS-CoV-2 and the expression of ACE2 and the pan-macrophage marker CD68. Aliquots of tissue samples, belonging to cetaceans stranded along the Italian coastline during 2020-2021, were collected for SARS-CoV-2 analysis by real-time PCR (RT-PCRT) (N = 43) and Immunohistochemistry (IHC) (N = 59); thirty-two aliquots of pulmonary tissue sample (N = 17 Tursiops truncatus, N = 15 Stenella coeruleoalba) available at the Mediterranean Marine Mammal Tissue Bank (MMMTB) of the University of Padua (Legnaro, Padua, Italy) were analyzed to investigate ACE2 expression by IHC. In addition, ACE2 and CD68 were also investigated by Double-Labeling Immunofluorescence (IF) Confocal Laser Microscopy. No SARS-CoV-2 positivity was found in samples analyzed for the survey while ACE2 protein was detected in the lower respiratory tract albeit heterogeneously for age, gender/sex, and species, suggesting that ACE2 expression can vary between different lung regions and among individuals. Finally, double IF analysis showed elevated colocalization of ACE2 and CD68 in macrophages only when an evident inflammatory reaction was present, such as in human SARS-CoV-2 infection.

9.
Front Vet Sci ; 9: 932327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990261

RESUMO

Marine invertebrates such as rotifers or Artemia, frequently used for fish larvae feeding, can be a potential source of pathogens. It has been demonstrated that Artemia can act as a nervous necrosis virus (NNV)-vector to Senegalese sole larvae. Therefore, in this study, we aimed to clarify the role of rotifers in NNV transmission to sea bass larvae following an oral challenge. Our results showed that sea bass larvae fed on a single dose of rotifers retaining NNV displayed clinical signs, mortality, and viral replication similar to the immersion challenge, although the course of the infection was slightly different between the two infection routes. Furthermore, we also demonstrated that rotifers can internalize NNV particles due to their filtering nature and maintain virus viability since viral particles were detected by immunohistochemistry, immunofluorescence, and cell culture within the rotifer body. However, viral quantification data suggested that rotifers are not permissive to NNV replication. In conclusion, this research demonstrated NNV horizontal transmission through rotifers to sea bass larvae, highlighting the importance of establishing strict routine controls on live food to prevent the introduction of potential pathogens to hatcheries.

10.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457172

RESUMO

Tetanus and Botulinum type B neurotoxins are bacterial metalloproteases that specifically cleave the vesicle-associated membrane protein VAMP at an identical peptide bond, resulting in inhibition of neuroexocytosis. The minute amounts of these neurotoxins commonly used in experimental animals are not detectable, nor is detection of their VAMP substrate sensitive enough. The immune detection of the cleaved substrate is much more sensitive, as we have previously shown for botulinum neurotoxin type A. Here, we describe the production in rabbit of a polyclonal antibody raised versus a peptide encompassing the 13 residues C-terminal with respect to the neurotoxin cleavage site. The antibody was affinity purified and found to recognize, with high specificity and selectivity, the novel N-terminus of VAMP that becomes exposed after cleavage by tetanus toxin and botulinum toxin type B. This antibody recognizes the neoepitope not only in native and denatured VAMP but also in cultured neurons and in neurons in vivo in neurotoxin-treated mice or rats, suggesting the great potential of this novel tool to elucidate tetanus and botulinum B toxin activity in vivo.


Assuntos
Toxinas Botulínicas Tipo A , Tétano , Animais , Anticorpos/metabolismo , Camundongos , Neurotoxinas/metabolismo , Peptídeos/metabolismo , Proteólise , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Coelhos , Ratos , Toxina Tetânica/química , Toxina Tetânica/metabolismo
11.
Pathogens ; 11(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456134

RESUMO

European sea bass (Dicentrarchus labrax) is an important farmed marine species for Mediterranean aquaculture. Outbreaks of betanodavirus represent one of the main infectious threats for this species. The red-spotted grouper nervous necrosis virus genotype (RGNNV) is the most widely spread in Southern Europe, while the striped jack nervous necrosis virus genotype (SJNNV) has been rarely detected. The existence of natural reassortants between these genotypes has been demonstrated, the RGNNV/SJNNV strain being the most common. This study aimed to evaluate the pathogenicity of different RGNNV/SJNNV strains in European sea bass. A selection of nine European reassortants together with parental RGNNV and SJNNV strains were used to perform in vivo experimental challenges via intramuscular injection. Additional in vivo experimental challenges were performed by bath immersion in order to mimic the natural infection route of the virus. Overall, results on survival rates confirmed the susceptibility of European sea bass to reassortants and showed different levels of induced mortalities. Results obtained by RT-qPCR also highlighted high viral loads in asymptomatic survivors, suggesting a possible reservoir role of this species. Our findings on the comparison of complete genomic segments of all reassortants have shed light on different amino acid residues likely involved in the variable pathogenicity of RGNNV/SJNNV strains in European sea bass.

12.
Pathogens ; 11(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335654

RESUMO

Viral nervous necrosis (VNN) is the most important viral disease affecting farmed fish in the Mediterranean. VNN can affect multiple fish species in all production phases (broodstock, hatchery, nursery and ongrowing) and sizes, but it is especially severe in larvae and juvenile stages, where can it cause up to 100% mortalities. European sea bass has been and is still the most affected species, and VNN in gilthead sea bream has become an emerging problem in recent years affecting larvae and juveniles and associated to the presence of new nervous necrosis virus (NNV) reassortants. The relevance of this disease as one of the main biological hazards for Mediterranean finfish farming has been particularly addressed in two recent H2020 projects: PerformFISH and MedAID. The presence of the virus in the environment and in the farming systems poses a serious menace for the development of the Mediterranean finfish aquaculture. Several risks associated to the VNN development in farms have been identified in the different phases of the farming system. The main risks concerning VNN affecting gilthead seabream and European seabass have been identified as restocking from wild fish in broodstock facilities, the origin of eggs and juveniles, quality water supply and live food in hatcheries and nurseries, and infected juveniles and location of farms in endemic areas for on-growing sites. Due to the potential severe impact, a holistic integrated management approach is the best strategy to control VNN in marine fish farms. This approach should include continuous surveillance and early and accurate diagnosis, essential for an early intervention when an outbreak occurs, the implementation of biosecurity and disinfection procedures in the production sites and systematic vaccination with effective vaccines. Outbreak management practices, clinical aspects, diagnostic techniques, and disinfections methods are reviewed in detail in this paper. Additionally, new strategies are becoming more relevant, such as the use of genetic resistant lines and boosting the fish immune system though nutrition.

13.
J Fish Dis ; 45(3): 471-477, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35007367

RESUMO

In November 2020 a mortality episode (30%) in juvenile Siberian and Russian sturgeons (Acipenser baerii, Brandt, and A. gueldenstaedtii, Brandt & Ratzeburg) and GUBA hybrid sturgeons (A. gueldenstaedtii × A. baerii) occurred in a hatchery in Northern Italy, associated with severe coelomic distension and abnormal reverse surface swimming. The fish were reared in concrete tanks supplied by well water, fed at 0.4% of body weight (b.w.) per day. Thirty sturgeon specimens were collected for necropsy, histological, bacteriological and virological examination. Macroscopic findings included diffuse and severe bloating of gastrointestinal tracts due to foamy contents with thinning and stretching of the gastrointestinal walls. Histological analysis revealed variable degrees of sloughing and necrosis of the intestinal epithelium, and the presence of bacterial aggregates. Anaerobic Gram-positive bacteria were investigated, and Clostridium perfringens was isolated from the gut. Specific PCRs identified the toxinotype A and the ß2 toxin gene. The daily feed administration was increased to 1.5% b.w. and after 5 days, the mortality ceased. A new animal cohort from the same groups was examined after 12 weeks, showing neither gut alterations nor isolation of C. perfringens. The imbalance of intestinal microbiota, presumably caused by underfeeding, favoured C. perfringens overgrowth and severe gas formation. The diet increase possibly restored the normal microbiota.


Assuntos
Doenças dos Peixes , Microbioma Gastrointestinal , Animais , Clostridium perfringens , Dieta/veterinária , Peixes
14.
Virus Evol ; 7(2): veab056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754510

RESUMO

Infectious hematopoietic necrosis virus (IHNV) is the causative agent of IHN triggering a systemic syndrome in salmonid fish. Although IHNV has always been associated with low levels of mortality in Italian trout farming industries, in the last years trout farmers have experienced severe disease outbreaks. However, the observed increasing virulence of IHNV is still based on empirical evidence due to the poor and often confounding information from the field. Virulence characterization of a selection of sixteen Italian isolates was performed through in vivo challenge of juvenile rainbow trout to confirm field evidence. The virulence of each strain was firstly described in terms of cumulative mortality and survival probability estimated by Kaplan-Meier curves. Furthermore, parametric survival models were applied to analyze the mortality rate profiles. Hence, it was possible to characterize the strain-specific mortality peaks and to relate their topology to virulence and mortality. Indeed, a positive correlation between maximum mortality probability and virulence was observed for all the strains. Results also indicate that more virulent is the strain, the earliest and narrowest is the mortality peak. Additionally, intra-host viral quantification determined in dead animals showed a significant correlation between viral replication and virulence. Whole-genome phylogeny conducted to determine whether there was a relation between virulence phenotype and IHNV genetics evidenced no clear clustering according to phenotype. Moreover, a root-to-tip analysis based on genetic distances and sampling date of Italian IHNV isolates highlighted a relevant temporal signal indicating an evolving nature of the virus, over time, with the more virulent strains being the more recent ones. This study provides the first systematic characterization of Italian IHNV's virulence. Overall results confirm field data and point out an abrupt increase in IHNV virulence, with strains from 2015-2019 showing moderate to high virulence in rainbow trout. Further investigations are needed in order to extensively clarify the relation between evolution and virulence of IHNV and investigate the genetic determinants of virulence of this viral species in rainbow trout.

15.
Vaccines (Basel) ; 9(5)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063318

RESUMO

Viral Nervous Necrosis (VNN) causes high mortality and reduced growth in farmed European sea bass (Dicentrarchus labrax) in the Mediterranean. In the current studies, we tested a novel Pichia-produced virus-like particle (VLP) vaccine against VNN in European sea bass, caused by the betanodavirus "Red-Spotted Grouper Nervous Necrosis Virus" (RGNNV). European sea bass were immunized with a VLP-based vaccine formulated with different concentrations of antigen and with or without adjuvant. Antibody response was evaluated by ELISA and serum neutralization. The efficacy of these VLP-vaccine formulations was evaluated by an intramuscular challenge with RGNNV at different time points (1, 2 and 10 months post-vaccination) and both dead and surviving fish were sampled to evaluate the level of viable virus in the brain. The VLP-based vaccines induced an effective protective immunity against experimental infection at 2 months post-vaccination, and even to some degree at 10 months post-vaccination. Furthermore, the vaccine formulations triggered a dose-dependent response in neutralizing antibodies. Serologic response and clinical efficacy, measured as relative percent survival (RPS), seem to be correlated with the administered dose, although for the individual fish, a high titer of neutralizing antibodies prior to challenge was not always enough to protect against disease. The efficacy of the VLP vaccine could not be improved by formulation with a water-in-oil (W/O) adjuvant. The developed RGNNV-VLPs show a promising effect as a vaccine candidate, even without adjuvant, to protect sea bass against disease caused by RGNNV. However, detection of virus in vaccinated survivors means that it cannot be ruled out that survivors can transmit the virus.

16.
Genet Sel Evol ; 53(1): 32, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794770

RESUMO

BACKGROUND: Susceptibility of European sea bass (Dicentrarchus labrax L.) to viral nervous necrosis (VNN) is well-known. Interest towards selective breeding as a tool to enhance genetic resistance in this species has increased sharply due to the major threat represented by VNN for farmed sea bass and limitations concerning specific therapeutical measures. A sea bass experimental population (N = 650) was challenged with nervous necrosis virus (NNV) to investigate genetic variation in VNN mortality. In addition, relationships of this trait with serum cortisol concentration after stress exposure, antibody titer against NNV antigens, and body weight at a fixed age were studied to identify potential indicator traits of VNN resistance. RESULTS: The estimate of heritability for VNN mortality was moderate and ranged from 0.15 (HPD95%, 95% highest posterior density interval: 0.02, 0.31) to 0.23 (HPD95%: 0.06, 0.47). Heritability estimates for cortisol concentration, antibody titer, and body weight were 0.19 (HPD95%: 0.07, 0.34), 0.36 (HPD95%: 0.16, 0.59) and 0.57 (HPD95%: 0.33, 0.84), respectively. Phenotypic relationships between traits were trivial and not statistically significant, except for the estimated correlation between antibody titer and body weight (0.24). Genetic correlations of mortality with body weight or antibody titer (- 0.39) exhibited a 0.89 probability of being negative. A negligible genetic correlation between mortality and cortisol concentration was detected. Antibody titer was estimated to be positively correlated with body weight (0.49). CONCLUSIONS: Antibody titer against NNV offers the opportunity to use indirect selection to enhance resistance, while the use of cortisol concentration as an indicator trait in breeding programs for VNN resistance is questionable. The estimate of heritability for VNN mortality indicates the feasibility of selective breeding to enhance resistance to NNV and raises attention to the development of genomic prediction tools to simplify testing procedures for selection candidates.


Assuntos
Bass/genética , Resistência à Doença/genética , Doenças dos Peixes/genética , Infecções por Vírus de RNA/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Bass/virologia , Peso Corporal , Doenças dos Peixes/imunologia , Hidrocortisona/sangue , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária
17.
J Fish Dis ; 44(7): 939-947, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33591616

RESUMO

Mortality in wild fish populations represents a challenging issue for public fish health inspectors. When a single fish species is involved, an infective aetiology is frequently suspected, with focus on viral notifiable diseases. However, other viral agents not subjected to regulation and causing mortality in common carp have been reported such as carp edema virus (CEV). In mid-June 2020, a severe common carp mortality was observed in an artificial lake in north-east of Italy. Sleepy fish were noted some days before the beginning of the mortality itself, which lasted several days and involved over 340 adult specimens. During the outbreak, water temperature was around 15°C, water quality was normal, and no adverse meteorological events were reported in the area. Four specimens, which showed severe cutaneous hyperaemia and increased mucus production on skin and gills, were tested by bacteriological methods and virological analysis targeting the main carp pathogens. Molecular analysis performed on gills, kidney and brains from all the fish analysed resulted positive for CEV, which, based on anamnestic information and laboratory findings, was considered the responsible for the mortality event herein described.


Assuntos
Carpas/virologia , Doenças dos Peixes/mortalidade , Infecções por Poxviridae/veterinária , Poxviridae/classificação , Animais , Animais Selvagens , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/virologia , Itália/epidemiologia , Filogenia , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/mortalidade , Infecções por Poxviridae/virologia , Proteínas Virais/genética
18.
Animals (Basel) ; 10(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271890

RESUMO

The viral haemorrhagic septicaemia virus (VHSV), a single-stranded negative-sense RNA novirhabdovirus affecting a wide range of marine and freshwater fish species, is a main concern for European rainbow trout (Oncorhynchus mykiss) fish farmers. Its genome is constituted by six genes, codifying five structural and one nonstructural proteins. Many studies have been carried out to determine the participation of each gene in the VHSV virulence, most of them based on genome sequence analysis and/or reverse genetics to construct specific mutants and to evaluate their virulence phenotype. In the present study, we have used a different approach with a similar aim: hypothesizing that a failure in any step of the replication cycle can reduce the virulence in vivo, we studied in depth the in vitro replication of VHSV in different cell lines, using sets of strains from different origins, with high, low and moderate levels of virulence for fish. The results demonstrated that several steps in the viral replication cycle could affect VHSV virulence in fish, including adsorption, RNA synthesis and morphogenesis (including viral release). Notably, differences among strains in any step of the replication cycle were mostly strain-specific and reflected only in part the in vivo phenotype (high and low virulent). Our data, therefore, support the need for further studies aimed to construct completely avirulent VHSV recombinants targeting a combination of genes rather than a single one in order to study the mechanisms of genes interplay and their effect on viral phenotype in vitro and in vivo.

19.
Animals (Basel) ; 10(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066257

RESUMO

This investigation focused on an episode of chronic mortality observed in juvenile Huso huso sturgeons. The examined subjects underwent pathological, microbiological, molecular, and chemical investigations. Grossly severe body shape deformities, epaxial muscle softening, and multifocal ulcerative dermatitis were the main observed findings. The more constant histopathologic findings were moderate to severe rarefaction and disorganization of the lymphohematopoietic lymphoid tissues, myofiber degeneration, atrophy and interstitial edema of skeletal epaxial muscles, and degeneration and atrophy of the gangliar neurons close to the myofibers. Chemical investigations showed a lower selenium concentration in affected animals, suggesting nutritional myopathy. Other manifestations were nephrocalcinosis and splenic vessel wall hyalinosis. Septicemia due to bacteria such as Aeromonas veronii, Shewanella putrefaciens, Citrobacter freundii, Chryseobacterium sp., and pigmented hyphae were found. No major sturgeon viral pathogens were detected by classical methods. Next-generation sequencing (NGS) analysis confirmed the absence of viral pathogens, with the exception of herpesvirus, at the order level; also, the presence of Aeromonas veronii and Shewanella putrefaciens was confirmed at the family level by the metagenomic classification of NGS data. In the absence of a primary yet undetected biological cause, it is supposed that environmental stressors, including nutritional imbalances, may have led to immune system impairment, facilitating the entry of opportunistic bacteria and mycotic hyphae.

20.
Front Microbiol ; 11: 1984, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983011

RESUMO

The Viral Hemorrhagic Septicemia Virus (VHSV) is an OIE notifiable pathogen widespread in the Northern Hemisphere that encompasses four genotypes and nine subtypes. In Europe, subtype Ia impairs predominantly the rainbow trout industry causing severe rates of mortality, while other VHSV genotypes and subtypes affect a number of marine and freshwater species, both farmed and wild. VHSV has repeatedly proved to be able to jump to rainbow trout from the marine reservoir, causing mortality episodes. The molecular mechanisms regulating VHSV virulence and host tropism are not fully understood, mainly due to the scarce availability of complete genome sequences and information on the virulence phenotype. With the scope of identifying in silico molecular markers for VHSV virulence, we generated an extensive dataset of 55 viral genomes and related mortality data obtained from rainbow trout experimental challenges. Using statistical association analyses that combined genetic and mortality data, we found 38 single amino acid polymorphisms scattered throughout the complete coding regions of the viral genome that were putatively involved in virulence of VHSV in trout. Specific amino acid signatures were recognized as being associated with either low or high virulence phenotypes. The phylogenetic analysis of VHSV coding regions supported the evolution toward greater virulence in rainbow trout within subtype Ia, and identified several other subtypes which may be prone to be virulent for this species. This study sheds light on the molecular basis for VHSV virulence, and provides an extensive list of putative virulence markers for their subsequent validation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...